4.6 Article

Self-vacancies in gallium arsenide:: An ab initio calculation -: art. no. 125207

期刊

PHYSICAL REVIEW B
卷 71, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.71.125207

关键词

-

向作者/读者索取更多资源

We report here a reexamination of the static properties of vacancies in GaAs by means of first-principles density-functional calculations using localized basis sets. Our calculated formation energies yields results that are in good agreement with recent experimental and ab initio calculation and provide a complete description of the relaxation geometry and energetic for various charge states of vacancies from both sublattices. Gallium vacancies are stable in the 0, -, -2, -3 charge states, but V-Ga(-3) remains the dominant charge state for intrinsic and n-type GaAs, confirming results from positron annihilation. Interestingly, arsenic vacancies show two successive negative-U transitions making only +1, -1, and -3 charge states stable, while the intermediate defects are metastable. The second transition (-/-3) brings a resonant bond relaxation for V-As(-3) similar to the one identified for silicon and GaAs divacancies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据