4.6 Reprint

SNOPT: An SQP algorithm for large-scale constrained optimization (Reprinted from SIAM Journal Optimization, vol 12, pg 979-1006, 2002)

期刊

SIAM REVIEW
卷 47, 期 1, 页码 99-131

出版社

SIAM PUBLICATIONS
DOI: 10.1137/S0036144504446096

关键词

large-scale optimization; nonlinear programming; nonlinear inequality constraints; sequential quadratic programming; quasi-Newton methods; limited-memory methods

向作者/读者索取更多资源

Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. Second derivatives are assumed to be unavailable or too expensive to calculate. We discuss an SQP algorithm that uses a smooth augmented Lagrangian merit function and makes explicit provision for infeasibility in the original problem and the QP subproblems. The Hessian of the Lagrangian is approximated using a limited-memory quasi-Newton method. SNOPT is a particular implementation that uses a reduced-Hessian semidefinite QP solver (SQOPT) for the QP subproblems. It is designed for problems with many thousands of constraints and variables but is best suited for problems with a moderate number of degrees of freedom (say, up to 2000). Numerical results are given for most of the CUTEr and COPS test collections (about 1020 examples of all sizes up to 40000 constraints and variables, and up to 20000 degrees of freedom).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据