4.5 Review

Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects

期刊

BIOPHYSICAL JOURNAL
卷 88, 期 3, 页码 1859-1874

出版社

CELL PRESS
DOI: 10.1529/biophysj.104.045328

关键词

-

向作者/读者索取更多资源

We show theoretically how adenosine 5'-triphosphate (ATP)-induced dynamic dissociations of spectrin. laments ( from each other and from the membrane) in the cytoskeleton network of red blood cells (RBC) can explain in a unified manner both the measured fluctuation amplitude as well as the observed shape transformations as a function of intracellular ATP concentration. Static defects can be induced by external stresses such as those present when RBCs pass through small capillaries. We suggest that the partially freed actin at these defect sites may explain the activation of the CFTR membrane-bound protein and the subsequent release of ATP by RBCs subjected to deformations. Our theoretical predictions can be tested by experiments that measure the correlation between variations in the binding of actin to spectrin, the activity of CFTR, and the amount of ATP released.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据