4.7 Article

Bioreduction of natural specular hematite under flow conditions

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 69, 期 5, 页码 1145-1155

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2004.08.014

关键词

-

向作者/读者索取更多资源

Dissimilatory reduction of Fe(III) by Shewanella oneidensis MR-1 was evaluated using natural specular hematite as sole electron acceptor in an open system under dynamic flow conditions to obtain a better understanding of biologic Fe(III) reduction in the natural environment. During initial exposure to hematite under advective flow conditions, cells exhibited a transient association with the mineral characterized by a rapid rate of attachment followed by a comparable rate of detachment before entering a phase of surface colonization that was slower but steadier than that observed initially. Accumulation of cells on the hematite surface was accompanied by the release of soluble Fe(II) into the aqueous phase when no precautions were taken to remove amorphous Fe(III) from the mineral surface before colonization. During the period of surface colonization following the detachment phase, cell yield was estimated at 1.5-4 x 10(7) cells/mu mol Fe(II) produced, which is similar to that reported in studies conducted in closed systems. This yield does not take into account those cells that detached during this phase or the Fe(II) that remained associated with the hematite surface. Hematite reduction by the bacterium led to localized surface pitting and localized discrete areas where Fe (II) precipitation occurred. The cleavage plane of hematite left behind after bacterial reduction, as revealed by our results, strongly suggests, that heterogeneous energetics of the mineral surface play a strong role in this bioprocess. AQDS, an electron shuttle shown to stimulate bioreduction of Fe(III) in other studies, inhibited reduction of hematite by this bacterium under the dynamic flow conditions employed in the current study. Copyright (c) 2005 Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据