4.5 Article

Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy

期刊

APPLIED OPTICS
卷 53, 期 9, 页码 1938-1946

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.53.001938

关键词

-

类别

资金

  1. Innovative Scientific Solutions, Inc.
  2. AFOSR

向作者/读者索取更多资源

A tunable quantum cascade laser sensor, based on wavelength modulation absorption spectroscopy near 4.8 mu m, was developed to measure CO concentration in harsh, high-pressure combustion gases. The sensor employs a normalized second harmonic detection technique (WMS - 2f /1f) at a modulation frequency of 50 kHz. Wavelength selection at 2059.91 cm(-1) targets the P(20) transition within the fundamental vibrational band of CO, chosen for absorption strength and relative isolation from infrared water and carbon dioxide absorption. The CO spectral model is defined by the Voigt line-shape function, and key line-strength and line-broadening spectroscopic parameters were taken from the literature or measured. Sensitivity analysis identified the CO-N-2 collisional broadening coefficient as most critical for uncertainty mitigation in hydrocarbon/air combustion exhaust measurements, and this parameter was experimentally derived over a range of combustion temperatures (1100-2600 K) produced in a shock tube. Accuracy of the wavelength-modulation-spectroscopy-based sensor, using the refined spectral model, was validated at pressures greater than 40 atm in nonreactive shock-heated gas mixtures. The laser was then free-space coupled to an indium-fluoride single-mode fiber for remote light delivery. The fiber-coupled sensor was demonstrated on an ethylene/air pulse detonation combustor, providing time-resolved (similar to 20 kHz), in situ measurements of CO concentration in a harsh flow field. (C) 2014 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据