4.5 Article

Ecotypic differentiation and phenotypic plasticity in reproductive traits of Armadillidium vulgare (Isopoda: Oniscidea)

期刊

OECOLOGIA
卷 143, 期 1, 页码 51-60

出版社

SPRINGER
DOI: 10.1007/s00442-004-1772-3

关键词

brood size; microevolution; norms of reaction; offspring size; reproductive allocation

类别

向作者/读者索取更多资源

Armadillidium vulgare differed in growth and survivorship on two field sites. Growth rates were higher at a site with consistently higher quality food than at the other site where less high-quality food was produced and which was less predictably accessible. Survivorship was higher at the second site where temperature fluctuations were consistently smaller. Individuals from the two populations were kept for 6 months under the same food and temperature conditions and patterns of resource allocation to reproductive traits analysed. Members of the population from the site with good growth conditions had significantly higher reproductive allocation, by 13.5%, and larger broods, by 9.1%, than those from the site with poor growth conditions. Contrary to theoretical predictions, they also had significantly larger offspring, by 7.5% dry mass. Larger offspring survived better than small ones. This differential survivorship, by 20% for a 3.4% difference in live mass, was much more pronounced under conditions of moisture stress and under fluctuating temperature regimes. Larger offspring would therefore be at a selective advantage on the site with more severe temperature fluctuations. Phenotypic plasticity in reproductive traits in response to experimental changes in food quality, temperature and crowding were monitored. Reproductive allocation was increased by 20.8% under conditions of higher food quality, by 14.7% at higher temperatures, and by 12.5% under less crowded conditions. Brood size, but not offspring dry mass, increased when food quality increased. When crowding increased by 25.0%, the size of broods remained the same but the dry mass of individual offspring decreased by 11.2%. Members of the population from the site with more variable access to high-quality food showed more plasticity in reproductive traits in response to changes in food supply than members of the population from the site with the more predictable food supply. Members of the population from the site with more stable temperatures showed less plasticity to temperature changes than members of the population from the site with greater temperature fluctuations. It is concluded that the observed microevolutionary processes and phenotypic plasticity have adaptative value as responses to spatial and temporal heterogeneity in environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据