4.8 Article

Whole blood coagulation on protein adsorption-resistant PEG and peptide functionalised PEG-coated titanium surfaces

期刊

BIOMATERIALS
卷 26, 期 8, 页码 861-872

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.03.036

关键词

coagulation inhibition; free oscillation rheometry; blood compatibility; poly(ethylene glycol); artifical surface; protein adsorption

向作者/读者索取更多资源

The aim of this study was to investigate whole blood coagulation on low blood plasma protein adsorbing surfaces. For this purpose, the polycationic graft copolymer poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), PLL-g-PEG grafted with a cell adhesive peptide containing the amino acid sequence -Arg-Gly-Asp- (RGD), and PLL-g-PEG with a control peptide -Arg-Asp-Gly-(RDG) were adsorbed onto titanium (oxide), forming stable monomolecular adlayers through electrostatic attraction. Free oscillation rheometry and complementary techniques were used to measure the coagulation time (CT) and other interactions of the surfaces with native whole blood, recalcified platelet-rich plasma (PRP), and recalcified citrated platelet-free plasma (PFP). The results show that the uncoated titanium surfaces (reference) activated platelets and quickly triggered the coagulation cascade via the intrinsic pathway, whereas the PLL-g-PEG surfaces displayed a prolonged CT, approximately 2-3 times longer compared to uncoated titanium. We hypothesise that blood coagulates outside the vascular system independent of low protein adsorption to or activation by surfaces, due to the absence of an active down-regulation of procoagulative processes by the vascular endothelium. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据