4.7 Article

Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame

期刊

ENERGY & FUELS
卷 19, 期 2, 页码 382-392

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef049867z

关键词

-

向作者/读者索取更多资源

Combustion measurements based on optical diagnostics techniques, which allow noninvasive measurements of velocity, density, temperature, pressure, and species concentration, have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the combustion characteristics of a pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated. Velocity and shape of nonspherical pulverized coal particles, light emissions from a local point, and temperature in the flame are measured by shadow Doppler particle analyzer (SDPA), a specially designed receiving optics (multicolor integrated receiving optics, MICRO), and a two-color radiation pyrometer, respectively. The simultaneous measurement of OH planar laser-induced fluorescence (OH-PLIF) and Mie scattering image of pulverized coal particles is performed to examine spatial relation of combustion reaction zone and pulverized coal particle. The results show that the size-classified diameter and velocity of the pulverized coal particles in the flame can be measured well by SDPA. The measurements of the OH chemiluminescence and CH band light emission from a local point in the flame using MICRO and the simultaneous measurement of the instantaneous OH-PLIF and Mie scattering image of pulverized coal are effective for evaluating the pulverized coal flames and investigating their detailed flame structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据