4.7 Article

Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis

期刊

NONLINEAR DYNAMICS
卷 39, 期 4, 页码 349-367

出版社

SPRINGER
DOI: 10.1007/s11071-005-4343-1

关键词

cylindrical shell; dynamic buckling; dynamic stability; parametric excitation

向作者/读者索取更多资源

An analytical-numerical method involving a small number of generalized coordinates is presented for the analysis of the nonlinear vibration and dynamic stability behaviour of imperfect anisotropic cylindrical shells. Donnell-type governing equations are used and classical lamination theory is employed. The assumed deflection modes approximately satisfy simply supported boundary conditions. The axisymmetric mode satisfying a relevant coupling condition with the linear, asymmetric mode is included in the assumed deflection function. The shell is statically loaded by axial compression, radial pressure and torsion. A two-mode imperfection model, consisting of an axisymmetric and an asymmetric mode, is used. The static-state response is assumed to be affine to the given imperfection. In order to find approximate solutions for the dynamic-state equations, Hamiltons principle is applied to derive a set of modal amplitude equations. The dynamic response is obtained via numerical time-integration of the set of nonlinear ordinary differential equations. The nonlinear behaviour under axial parametric excitation and the dynamic buckling under axial step loading of specific imperfect isotropic and anisotropic shells are simulated using this approach. Characteristic results are discussed. The softening behaviour of shells under parametric excitation and the decrease of the buckling load under step loading, as compared with the static case, are illustrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据