4.5 Article

Compact remote multisensing instrument for planetary surfaces and atmospheres characterization

期刊

APPLIED OPTICS
卷 52, 期 14, 页码 3116-3126

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.52.003116

关键词

-

类别

资金

  1. NASA Mars Instrument Development Project through NASA LaRC
  2. University of Hawaii

向作者/读者索取更多资源

This paper describes a prototype feasibility demonstration system of a multipurpose Raman-fluorescence spectrograph and compact lidar system suitable for planetary sciences missions. The key measurement features of this instrument are its abilities to: i) detect minerals and organics at low levels in the dust constituents of surface, subsurface material and rocks on Mars, ii) determine the distribution of trace fluorescent ions with time-resolved fluorescence spectroscopy to learn about the geological conditions under which these minerals formed, iii) inspect material toxicity from a mobile robotic platform during local site characterization, iv) measure dust aerosol and cloud distributions, v) measure near-field atmospheric carbon dioxide, and vi) identify surface CO2-ice, surface water ice, and surface or subsurface methane hydrate. This prototype instrument and an improved follow-on design are described and have the capability for scientific investigations discussed above, to remotely investigate geological processes from a robotic platformat more than a 20-m radial distance with potential to go beyond 100 m. It also provides single wavelength (532 nm) aerosol/cloud profiling over very long ranges (>10 km with potential to 20 km). Measurement results obtained with this prototype unit from a robotic platform and calculated potential performance are presented in this paper. (c) 2013 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据