4.7 Article

Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity

期刊

PHYSICS OF FLUIDS
卷 17, 期 3, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.1862635

关键词

-

向作者/读者索取更多资源

Computational fluid dynamics is used to investigate the effects of cell deformability and viscoelasticity on receptor-mediated leukocyte adhesion to endothelium or a ligand coated surface in a parallel-plate flow chamber. In the three-dimensional numerical code, a leukocyte is modeled as a compound viscoelastic drop (a nucleus covered by a thick layer of cytoplasm). The nucleus, cytoplasm, and extracellular fluid are considered as Newtonian or viscoelastic liquids of high viscosity. The receptor-ligand interaction is incorporated into the code by using the spring-peeling kinetic model under the assumption that leukocyte receptors are located on the tips of cylindrical microvilli distributed over the leukocyte membrane. The code is based on the volume-of-fluid method, and the Giesekus constitutive equation is implemented in the code to capture viscoelasticity of the cytoplasm and nucleus. Numerical simulations demonstrate the formation and breakup of membrane tethers observed in vitro and suggest that the elasticity of the cytoplasm is responsible for a teardrop shape of rolling leukocytes in vivo. When viewed from the top, as normally occurs during shear flow experiments in vitro, little or no deformation occurs, a side view shows significant deformation in the contact region. We show that the leukocyte membrane can be extended and disrupted under high shear if the receptor-ligand bonds live in a stressed state for a sufficiently long time. If the shear rate is low, the leukocyte rolls along the surface. The rolling velocity of the viscoelastic cell is smaller than that of the Newtonian cell. This is due to the increased deformability of the viscoelastic cell and, as a result, the decreased torque acting on this cell. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据