4.6 Article

Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators

期刊

JOURNAL OF APPLIED PHYSICS
卷 97, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1855394

关键词

-

向作者/读者索取更多资源

Finite-element numerical modeling and analysis of electromagnetic waveguides and resonators used in terahertz quantum cascade lasers are presented. Both metal-metal and semi-insulating (SI) surface-plasmon ridge waveguide geometries were investigated. Simulations and analysis of two types were performed: two-dimensional waveguides (eigenmode calculation), and two- and three-dimensional resonators (facet reflectivity calculation for infinite width and finite width waveguides, respectively). Waveguide simulations extend previous transverse one-dimensional analyses to two dimensions (for the lateral and transverse dimensions), and quantify the breakdown of the one-dimensional approximation as the ridge width is reduced. Resonator simulations in two and three dimensions are presented and are used to obtain facet reflectivities and output radiation patterns. For the metal-metal waveguide structures, these resonator simulations quantitatively show strong deviations for terahertz facet reflectivities from those predicted by the effective index method. However, the effective index method for calculating reflectivities is shown to still be valid for SI surface-plasmon waveguides. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据