4.6 Article

Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-004-3157-1

关键词

-

向作者/读者索取更多资源

Highly sensitive, sequence-specific and label-free DNA sensors were demonstrated by monitoring the electronic conductance of silicon nanowires (SiNWs) with chemically bonded single-stranded (ss) DNA or peptide nucleic acid (PNA) probe molecules. For a 12-mer oligonucleotide, tens of pM of target ss-DNA in solution was recognized when the complementary DNA oligonucleotide probe was attached to the SiNW surfaces. In contrast, ss-DNA samples of x1000 concentration with a single-base mismatch produce only a weak signal due to nonspecific binding. In order to gain a physical understanding of the change in conductance of the SiNWs with the attachment of the DNA targets and the probes, process and device simulations of the two-dimensional cross sections of the SiNWs were performed. The simulations explained the width dependence of the SiNW conductance and provided understanding to improve the sensor performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据