4.7 Review

Physicochemical perspectives on DNA microarray and biosensor technologies

期刊

TRENDS IN BIOTECHNOLOGY
卷 23, 期 3, 页码 143-149

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tibtech.2005.01.004

关键词

-

向作者/读者索取更多资源

Detection and sequence-identification of nucleic acid molecules is often performed by binding, or hybridization, of specimen 'target' strands to immobilized, complementary 'probe' strands. A familiar example is provided by DNA microarrays used to carry out thousands of solid-phase hybridization reactions simultaneously to determine gene expression patterns or to identify genotypes. The underlying molecular process, namely sequence-specific recognition between complementary probe and target molecules, is fairly well understood in bulk solution. However, this knowledge proves insufficient to adequately understand solid-phase hybridization. For example, equilibrium binding constants for solid-phase hybridization can differ by many orders of magnitude relative to solution values. Kinetics of probe-target binding are affected. Surface interactions, electrostatics and polymer phenomena manifest themselves in ways not experienced by hybridizing strands in bulk solution. The emerging fundamental understanding provides important insights into application of DNA microarray and biosensor technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据