4.4 Article Proceedings Paper

Cloning, expression, purification, and analysis of mannitol dehydrogenase gene mtlK from Lactobacillus brevis

期刊

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
卷 121, 期 -, 页码 391-401

出版社

SPRINGER
DOI: 10.1385/ABAB:121:1-3:0391

关键词

lactic acid bacteria; mannitol-2-dehydrogenase; NAD(P)H; mtlK; mannitol fermentation; Lactobacillus

向作者/读者索取更多资源

The commercial production of mannitol involves high-pressure hydrogenation of fructose using a nickel catalyst, a costly process. Mannitol can be produced through fermentation by microorganisms. Currently, a few Lactobacillus strains are used to develop an efficient process for mannitol bioproduction; most of the strains produce mannitol from fructose with other products. An approach toward improving this process would be to genetically engineer Lactobacillus strains to increase fructose-to-mannitol conversion with decreased production of other products. We cloned the gene mtlK encoding mannitol-2-dehydrogenase (EC 1.1.1.67) that catalyzes the conversion of fructose into mannitol from Lactobacillus brevis using genomic polymerase chain reaction. The mtlK clone contains 1328 bp of DNA sequence including a 1002-bp open reading frame that consisted of 333 amino acids with a predicted molecular mass of about 36 kDa. The functional mannitol-2-dehydrogenase was produced by overexpressing mtlK via pRSETa vector in Escherichia coli BL21pLysS on isopropyl-beta-D-thiogalactopyranoside induction. The fusion protein is able to catalyze the reduction of fructose to mannitol at pH 5.35. Similar rates of catalytic reduction were observed using either the NADH or NADPH as cofactor under in vitro assay conditions. Genetically engineered Lactobacillus plantarum TF103 carrying the mtlK gene of L. brevis indicated increased mannitol production from glucose. The evaluation of mixed sugar fermentation and mannitol production by this strain is in progress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据