4.5 Article

Transparent superhydrophobic surfaces for applications of controlled reflectance

期刊

APPLIED OPTICS
卷 51, 期 11, 页码 1645-1653

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.51.001645

关键词

-

类别

向作者/读者索取更多资源

This work involves a new optical application for transparent superhydrophobic materials, which enables low-energy optical contact between a liquid and solid surface. The new technique described here uses this surface property to control the reflectance of a surface using frustration of total internal reflection. Surface chemistry and appropriate micro-scale and nano-scale geometries are combined to produce interfaces with low adhesion to water and the degree to which incident light is reflected at this interface is controlled by the movement of water, thereby modifying the optical characteristics at the interface. The low adhesion of water to superhydrophobic surfaces is particularly advantageous in imaging applications where power use must be minimized. This paper describes the general approach, as well as a proof-of-principle experiment in which the reflectance was controlled by moving a water drop into and out of contact with a superhydrophobic surface by variation of applied electrostatic pressure. (C) 2012 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据