4.3 Article

Mechanisms of blood pressure variability-induced cardiac hypertrophy and dysfunction in mice with impaired baroreflex

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00445.2004

关键词

sinoaortic baroreceptor denervation; transforming growth factor-beta1; p125 focal adhesion kinase; p38 mitogen-activated protein kinase; left ventricular end-diastolic pressure

向作者/读者索取更多资源

Enhanced blood pressure variability contributes to left ventricular hypertrophy and end-organ damage, even in the absence of hypertension. We hypothesized that the greater number of high-blood pressure episodes associated with enhanced blood pressure variability causes cardiac hypertrophy and dysfunction by activation of mechanosensitive and autocrine pathways. Normotensive mice were subjected to sinoaortic baroreceptor denervation (SAD) or sham surgery. Twelve weeks later, blood pressure variability was doubled in SAD compared with sham-operated mice. Blood pressure did not differ. Cardiac hypertrophy was reflected in greater heart/body weight ratios, larger myocyte cross-sectional areas, and greater left ventricular collagen deposition. Furthermore, left ventricular atrial and brain natriuretic peptide mRNA expression was greater in SAD than in sham-operated mice. SAD had higher left ventricular end-diastolic pressures and lower myocardial contractility indexes, indicating cardiac dysfunction. Cardiac protein content of phosphorylated p125 focal adhesion kinase (p125 FAK) and phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) was greater in SAD than in sham-operated mice, indicating activation of mechanosensitive pathways of cardiac hypertrophy. Furthermore, enhanced cardiac renin and transforming growth factor-beta1 (TGFbeta1) protein content indicates activation of autocrine pathways of cardiac hypertrophy. Adrenal tyrosine hydroxylase protein content and the number of renin-positive glomeruli were not different, suggesting that sympathetic activation and the systemic renin-angiotensin system did not contribute to cardiac hypertrophy. In conclusion, more frequent blood pressure rises in subjects with high blood pressure variability activate mechanosensitive and autocrine pathways leading to cardiac hypertrophy and dysfunction even in the absence of hypertension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据