4.8 Article

Ethylene-induced differential growth of petioles in arabidopsis. Analyzing natural variation, response kinetics, and regulation

期刊

PLANT PHYSIOLOGY
卷 137, 期 3, 页码 998-1008

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.104.053967

关键词

-

向作者/读者索取更多资源

Plants can reorient their organs in response to changes in environmental conditions. In some species, ethylene can induce resource-directed growth by stimulating a more vertical orientation of the petioles (hyponasty) and enhanced elongation. In this study on Arabidopsis (Arabidopsis thaliana), we show significant natural variation in ethylene-induced petiole elongation and hyponastic growth. This hyponastic growth was rapidly induced and also reversible because the petioles returned to normal after ethylene withdrawal. To unravel the mechanisms behind the natural variation, two contrasting accessions in ethylene-induced hyponasty were studied in detail. Columbia-0 showed a strong hyponastic response to ethylene, whereas this response was almost absent in Landsberg erecta (Ler). To test whether Ler is capable of showing hyponastic growth at all several signals were applied. From all the signals applied, only spectrally neutral shade (20 mu mol m(-2) s(-1)) could induce a strong hyponastic response in Ler. Therefore, Ler has the capacity for hyponastic growth. Furthermore, the lack of ethylene-induced hyponastic growth in Ler is not the result of already-saturating ethylene production rates or insensitivity to ethylene, as an ethylene-responsive gene was up-regulated upon ethylene treatment in the petioles. Therefore, we conclude that Ler is missing an essential component between the primary ethylene signal transduction chain and a downstream part of the hyponastic growth signal transduction pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据