4.8 Article

Probing the interface between biomolecules and inorganic materials using yeast surface display and genetic engineering

期刊

ACTA BIOMATERIALIA
卷 1, 期 2, 页码 145-154

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2004.11.004

关键词

peptide-material interactions; sequence-activity relationships; cadmium sulfide; semiconductor nanoparticle; bioinorganic materials

资金

  1. NIGMS NIH HHS [T32 GM008334] Funding Source: Medline

向作者/读者索取更多资源

Although promising for biomimetic materials applications, polypeptides binding inorganic material surfaces and the mechanism of their function have been difficult to characterize. This paper reports sequence-activity relationships of peptides interfacing with semiconductor CdS, and presents methodologies broadly applicable to studying peptide-solid surface interactions. We first employed yeast surface display with a human repertoire antibody library and identified rarely-occurring scFv fragments as CdS-binding polypeptides. Using our semi-quantitative cell-surface binding assay, site-directed mutational analysis, and genetic engineering we defined short distal regions of the displayed polypeptides necessary and sufficient for CdS binding. Alanine scanning mutagenesis in combination with a series of engineered polyhistidine peptides elucidated a direct relationship between histidine number and binding strength, which appeared to be further modulated by arginine and basic residues. The minimum strength of interaction was established by competition studies using soluble synthetic peptide analogs, which showed half-maximal inhibition of yeast binding to CdS at similar to 2 mu M peptide. We then showed the ability of cells displaying material-specific polypeptides to form self-healing biofilms and discriminate between materials of fabricated heterostructure surfaces. Furthermore, we demonstrated the synthetic potential of the selected soluble CdS peptide in mediating aqueous synthesis of fluorescent CdS nanoparticles at room temperature. This platform may be further applied to elucidate mechanisms governing interfacial interactions and to generate material-specific reagents useful in medicine, biosensors, and bioproduction of high value inorganic materials. (c) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据