4.6 Article

Self-assembly and dynamics of oxide nanorods on NiAl(110)

期刊

PHYSICAL REVIEW B
卷 71, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.71.125428

关键词

-

向作者/读者索取更多资源

We observe the spontaneous formation of parallel oxide rods upon exposing a clean NiA](110) surface to oxygen at elevated temperatures (850-1350 K). By following the self-assembly of individual nanorods in real time with low-energy electron microscopy (LEEM), we are able to investigate the processes by which the rods lengthen along their axes and thicken normal to the surface of the substrate. At a fixed temperature and O-2 pressure, the rods lengthen along their axes at a constant rate. The exponential temperature dependence of this rate yields an activation energy for growth of 1.2 +/- 0.1 eV. The rod growth rates do not change as their ends pass in close proximity (<40 nm) to each other, which suggests that they do not compete for diffusing flux in order to elongate. Both LEEM and scanning tunneling microscopy (STM) studies show that the rods can grow vertically in layer-by-layer fashion. The heights of the rods are extremely bias dependent in STM images, but occur in integer multiples of approximately 2-angstrom-thick oxygen-cation layers. As the rods elongate from one substrate terrace to the next, we commonly see sharp changes in their rates of elongation that result from their tendency to gain (lose) atomic layers as they descend (climb) substrate steps. Diffraction analysis and dark-field imaging with LEEM indicate that the rods are crystalline, with a lattice constant that is well matched to that of the substrate along their length. We discuss the factors that lead to the formation of these highly anisotropic structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据