4.6 Article

Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00787.2004

关键词

tissue engineering; cardiac myocyte; scaffold mass transport; perfluorocarbons

向作者/读者索取更多资源

Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol 288: H1278-H1289, 2005. First published November 11, 2004; doi:10.1152/ajpheart.00787.2004.-A steady-state model of oxygen distribution in a cardiac tissue construct with a parallel channel array was developed and solved for a set of parameters using the finite element method and commercial software (FEMLAB). The effects of an oxygen carrier [Oxygent; 32% volume perfluorocarbon (PFC) emulsion] were evaluated. The parallel channel array mimics the in vivo capillary tissue bed, and the PFC emulsion has a similar role as the natural oxygen carrier hemoglobin in increasing total oxygen content. The construct was divided into an array of cylindrical domains with a channel in the center and tissue space surrounding the channel. In the channel, the main modes of mass transfer were axial convection and radial diffusion. In the tissue region, mass transfer was by axial and radial diffusion, and the consumption of oxygen was by Michaelis-Menten kinetics. Neumann boundary conditions were imposed at the channel centerline and the half distance between the domains. Supplementation of culture medium by PFC emulsion improved mass transport by increasing convective term and effective diffusivity of culture medium. The model was first implemented for the following set of experimentally obtained parameters: construct thickness of 0.2 cm, channel diameter of 330 mum, channel center-to-center spacing of 700 mum, and average linear velocity per channel of 0.049 cm/s, in conjunction with PFC supplemented and unsupplemented culture medium. Subsequently, the model was used to define favorable scaffold geometry and flow conditions necessary to cultivate cardiac constructs of high cell density (10(8) cells/ml) and clinically relevant thickness (0.5 cm). In future work, the model can be utilized as a tool for optimization of scaffold geometry and flow conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据