4.5 Article

Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases

期刊

MOLECULAR MICROBIOLOGY
卷 55, 期 6, 页码 1883-1895

出版社

WILEY
DOI: 10.1111/j.1365-2958.2005.04515.x

关键词

-

向作者/读者索取更多资源

Because of its biofilm forming potential Staphylococcus epidermidis has evolved as a leading cause of device-related infections. The polysaccharide intercellular adhesin (PIA) is significantly involved in biofilm accumulation. However, infections because of PIA-negative strains are not uncommon, suggesting the existence of PIA-independent biofilm accumulation mechanisms. Here we found that biofilm formation in the clinically significant S. epidermidis 5179 depended on the expression of a truncated 140 kDa isoform of the 220 kDa accumulation-associated protein Aap. As expression of the truncated Aap isoform leads to biofilm formation in aap-negative S. epidermidis 1585, this domain mediates intercellular adhesion in a polysaccharide-independent manner. In contrast, expression of full-length Aap did not lead to a biofilm-positive phenotype. Obviously, to gain adhesive function, full-length Aap has to be proteolytically processed through staphylococcal proteases as demonstrated by inhibition of biofilm formation by a 2 macroglobulin. Importantly, also exogenously added granulocyte proteases activated Aap, thereby inducing biofilm formation in S. epidermidis 5179 and four additional, independent clinical S. epidermidis strains. It is therefore reasonable to assume that in vivo effector mechanisms of the innate immunity can directly induce protein-dependent S. epidermidis cell aggregation and biofilm formation, thereby enabling the pathogen to evade clearance by phagocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据