4.5 Article

Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana

期刊

MOLECULAR GENETICS AND GENOMICS
卷 273, 期 1, 页码 10-19

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00438-005-1113-1

关键词

ionising radiation; oxidative stress; plant-pathogen interaction; NAD(H) phosphorylation; T-DNA insertion mutant

向作者/读者索取更多资源

A novel Arabidopsis thaliana gene (AtNADK-1) was identified based on its response to radiation and oxidative stress. Levels of AtNADK-1 mRNA increase eight-fold following exposure to ionising radiation and are enhanced three-fold by treatment with hydrogen peroxide. The gene also appears to be differentially regulated during compatible and incompatible plant-pathogen interactions in response to Pseudomonas syringae pv. tomato. The full-length AtNADK-1 cDNA encodes a 58-kDa protein that shows high sequence homology to the recently defined family of NAD(H) kinases. Recombinant AtNADK-1 utilises ATP to phosphorylate both NAD and NADH, showing a two-fold preference for NADH. Using reverse genetics, we demonstrate that AtNADK-1 deficient plants display enhanced sensitivity to gamma irradiation and to paraquat-induced oxidative stress. Our results indicate that this novel NAD(H) kinase may contribute to the maintenance of redox status in Arabidopsis thaliana.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据