4.2 Article

The evolutionary genetics of egg size plasticity in a butterfly

期刊

JOURNAL OF EVOLUTIONARY BIOLOGY
卷 18, 期 2, 页码 281-289

出版社

WILEY
DOI: 10.1111/j.1420-9101.2004.00855.x

关键词

Bicyclus anynana; genotype-environment interaction; half-sib analysis; offspring size; phenotypic plasticity; pupal mass; temperature

向作者/读者索取更多资源

The evolution of phenotypic plasticity requires that it is adaptive, genetically determined, and exhibits sufficient genetic variation. For the tropical butterfly Bicyclus anynana there is evidence that temperature-mediated plasticity in egg size is an adaptation to predictable seasonal change. Here we set out to investigate heritability in egg size and genetic variation in the plastic response to temperature in this species, using a half-sib breeding design. Egg size of individual females was first measured at a high temperature 4 days after eclosion. Females were then transferred to a low temperature and egg size was measured after acclimation periods of 6 and 12 days respectively. Overall, additive genetic variance explained only 3-11% of the total phenotypic variance, whereas maternal effects were more pronounced. Genotype-environment interactions and cross-environmental correlations of less than unity suggest that there is potential for short-term evolutionary change. Our findings strengthen the support for the adaptive nature of temperature-mediated plasticity in egg size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据