4.2 Article

Optimization of the synthesis of poly(octadecyl acrylate) by atom transfer radical polymerization and the preparation of all comblike amphiphilic diblock copolymers

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/pola.20582

关键词

octadecyl acrylate; oligo(ethylene glycol) methacrylate (OEGMA); atom transfer polymerization (ATRP); comblike polymers; block copolymers; amphiphiles; micelles; electron microscopy

向作者/读者索取更多资源

The atom transfer radical polymerization of octadecyl acrylate (ODA) has been investigated and optimized to produce polymers with predetermined molecular weights and narrow polydispersities (<1.2). The poor solubility of the catalytic system formed with conventional ligands such as the N-(n-propyl)-2-pyridylmethanimine and 2,2'-bipyridine with Cu(I)Br in nonpolar reaction conditions gave poor control over molecular weight characteristics in ODA polymerizations. The use of N-(n-octyl)-2-pyridylmethanimine in combination with Cu(I)Br yielded a more soluble catalyst that improved control over the polymerization. The products from the polymerizations were further improved when an initiator, octadecyl 2-bromo-2-methyl-propanoate, similar in structure to the monomer, was used. Together, these modifications produced polymerizations that showed true controlled character as well as products with predetermined molecular weights and narrow polydispersities. Diblock copolymers of PODA were prepared with methyl methacrylate (MXM) and olig(oethylene glycol) methyl ether methacrylate (OEGMA). The PODA-block-POEGMA copolymers are the first examples of all comblike amphiphilic block copolymers. One of PODA-block-POEGAU copolymer samples has been shown to self-assemble as micelles in a dilute aqueous solution. (C) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据