4.7 Review

Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 99, 期 1, 页码 143-154

出版社

SPRINGER
DOI: 10.1007/s00253-014-6217-2

关键词

Omega-3 fatty acids; Polyunsaturated fatty acid; Triacylglycerol; Transgenic plant; Oilseed; Camelina sativa

资金

  1. Biotechnology and Biological Sciences Research Council (BBSRC, U.K)
  2. Biotechnology and Biological Sciences Research Council [BBS/E/C/00005207] Funding Source: researchfish
  3. BBSRC [BBS/E/C/00005207] Funding Source: UKRI

向作者/读者索取更多资源

Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain. Latterly, long chain polyunsaturated omega-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5 Delta 5,8,11,14,17) and docosahexanoic acid (DHA; 22:6 Delta 4,7,10,13,16,19), which typically only enter the human diet via the consumption of oily fish, have attracted much attention. The health benefits of the omega-3 LC-PUFAs EPA and DHA are now well established. Given the desire for a sustainable supply of omega-LC-PUFA, efforts have focused on enhancing the composition of vegetable oils to include these important fatty acids. Specifically, EPA and DHA have been the focus of much study, with the ultimate goal of producing a terrestrial plant-based source of these so-called fish oils. Over the last decade, many genes encoding the primary LC-PUFA biosynthetic activities have been identified and characterized. This has allowed the reconstitution of the LC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate omega-3 LC-PUFA to levels similar to that found in fish oil. In this review, we will describe the most recent developments in this field and the challenges of overwriting endogenous seed lipid metabolism to maximize the accumulation of these important fatty acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据