4.5 Article

Inositol (14,5)-trisphosphate receptor links to filamentous actin are important for generating local Ca2+ signals in pancreatic acinar cells

期刊

JOURNAL OF CELL SCIENCE
卷 118, 期 5, 页码 971-980

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.01693

关键词

acinar; actin; IP3R; Ca2+

向作者/读者索取更多资源

We explored a potential structural and functional link between filamentous actin (F-actin) and inositol (1,4,5)trisphosphate receptors IP(3)Rs) in mouse pancreatic acinar cells. Using immunocytochemistry, F-actin and type 2 and 3 IP(3)Rs (IP(3)R2 and IP3R3) were identified in a cellular compartment immediately beneath the apical plasma membrane. In an effort to demonstrate that IP3R distribution is dependent on an intact F-actin network in the apical subplasmalemmal region, cells were treated with the actin-depolymerising agent latrunculin B. Immunocytochernistry indicated that latrunculin B treatment reduced F-actin in the basolateral subplasmalemmal compartment, and reduced and fractured F-actin in the apical subplasmalemmal compartment. This latrunculin-B-induced loss of F-actin in the apical region coincided with a reduction in IP(3)R2 and IP(3)R3, with the remaining IP(3)Rs localized with the remaining F-actin. Experiments using western blot analysis showed that IP(3)R3s are resistant to extraction by detergents, which indicates a potential interaction with the cytoskeleton. Latrunculin B treatment in whole-cell patch-clamped cells inhibited Ca2+-dependent Cl- current spikes evoked by inositol (2,4,5)-trisphosphate; this is due to an inhibition of the underlying local Ca2+ signal. Based on these findings, we suggest that IP3Rs form links with F-actin in the apical domain and that these links are essential for the generation of local Ca2+ spikes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据