4.6 Article

Beating of oscillations in transport coefficients of a one-dimensionally periodically modulated two-dimensional electron gas in the presence of spin-orbit interaction

期刊

PHYSICAL REVIEW B
卷 71, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.71.125301

关键词

-

向作者/读者索取更多资源

Transport properties of a two-dimensional electron gas (2DEG) are studied in the presence of a perpendicular magnetic field B, of a weak one-dimensional (ID) periodic potential modulation, and of the spin-orbit interaction (SOI) described only by the Rashba term. In the absence of the modulation the SOI mixes the spin-up and spin-down states of neighboring Landau levels into two new, unequally spaced energy branches. The levels of these branches broaden into bands in the presence of the modulation and their bandwidths oscillate with the field B. Evaluated at the Fermi energy, the nth level bandwidth of each series has a minimum or vanishes at different values of the field B. In contrast with the ID-modulated 2DEG without SOI, for which only one flat-band condition applies, here there are two flat-band conditions that can change considerably as a function of the SOI strength a and accordingly influence the transport coefficients of the 2DEG. The phase and amplitude of the Weiss and Shubnikov-de Haas (SdH) oscillations depend on the strength a. For small values of a both oscillations show beating patterns. Those of the former are due to the independently oscillating bandwidths whereas those of the latter are due to modifications of the density of states, exhibit an even-odd filling factor transition, and are nearly independent of the modulation strength. For strong values of a the SdH oscillations are split in two.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据