4.5 Article

Poly(ADP-ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.104.077164

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL59266] Funding Source: Medline

向作者/读者索取更多资源

Oxidant stress-induced activation of poly(ADP-ribose) polymerase (PARP) plays a role in the pathogenesis of various cardiovascular diseases. We have now investigated the role of PARP in the process of cardiac remodeling and heart failure in a mouse model of heart failure induced by transverse aortic constriction (banding). The catalytic activity of PARP was inhibited by the potent isoindolinone-based PARP inhibitor INO-1001 or by PARP-1 genetic deficiency. PARP inhibition prevented the pressure overload-induced decrease in cardiac contractile function, despite the pressure gradient between both carotid arteries being comparable in the two experimental groups. The development of hypertrophy, the formation of collagen in the hearts, and the mitochondrial-to-nuclear translocation of the cell death factor apoptosis-inducing factor (AIF) were attenuated by PARP inhibition. The ability of the inhibitor to block the catalytic activity of PARP was confirmed by immunohistochemical detection of poly(ADP-ribose), the product of the enzyme in the heart. Plasma levels of INO-1001, as measured at the end of the experiments, were in the concentration range sufficient to block the oxidant-mediated activation of PARP in murine cardiac myocytes in vitro. Myocardial hypertrophy and AIF translocation was also reduced in PARP-1-deficient mice undergoing aortic banding, compared with their wild-type counterparts. Overall, the current results demonstrate the importance of poly(ADP-ribos)ylation in the pathogenesis of banding-induced heart failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据