4.7 Article

Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 98, 期 1, 页码 137-149

出版社

SPRINGER
DOI: 10.1007/s00253-013-5303-1

关键词

Bioconversion; Pseudomonas putida; Vanillin; Ferulic acid; Genetic engineering; Plasmid-free

资金

  1. Federal Ministry of Science and Education (BMBF), Germany [FZK 315406]

向作者/读者索取更多资源

Vanillin is one of the most important flavoring agents used today. That is why many efforts have been made on biotechnological production from natural abundant substrates. In this work, the nonpathogenic Pseudomonas putida strain KT2440 was genetically optimized to convert ferulic acid to vanillin. Deletion of the vanillin dehydrogenase gene (vdh) was not sufficiant to prevent vanillin degradation. Additional inactivation of a molybdate transporter, identified by transposon mutagenesis, led to a strain incapable to grow on vanillin as sole carbon source. The bioconversion was optimized by enhanced chromosomal expression of the structural genes for feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech) by introduction of the strong tac promoter system. Further genetic engineering led to high initial conversion rates and molar vanillin yields up to 86 % within just 3 h accompanied with very low by-product levels. To our knowledge, this represents the highest productivity and molar vanillin yield gained with a Pseudomonas strain so far. Together with its high tolerance for ferulic acid, the developed, plasmid-free P. putida strain represents a promising candidate for the biotechnological production of vanillin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据