4.7 Article

Development and characterization of essential oil component-based polymer films: a potential approach to reduce bacterial biofilm

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 97, 期 21, 页码 9515-9523

出版社

SPRINGER
DOI: 10.1007/s00253-013-5196-z

关键词

Essential oils; Polymeric film; Biofilm; Dual species; XTT assay

向作者/读者索取更多资源

The development of new polymeric materials aimed to control the bacterial biofilm appears to be an important practical approach. The goal of the present study was to prepare and characterize poly(ethylene-co-vinyl acetate) copolymer (EVA) films containing citronellol, eugenol, and linalool and evaluate their efficiency on growth and biofilm formation of Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa in monospecies and dual species. The results showed that the addition of oil components influenced the elastic modulus (15 % decrease), the tensile stress (30 % decrease), the elongation at break (10 % increase), and the contact angle values (10-20A degrees decrease) while leaving the homogeneity of the surface unaltered. Among the polymeric films, EVA + citronellol and EVA + eugenol at 7 wt% had the best inhibitory effect. After 24-48 h of incubation, EVA + citronellol was more effective against the growth (30-60 % reduction) than EVA + eugenol (15-30 % inhibition). However, this inhibition decreased after 240 h of incubation. On the contrary, the biofilm evaluation revealed a strong inhibition trend also after prolonged incubation time: the amount of biomass per square centimeter formed on copolymer with oil components was significantly less (40-70 % decrease) than that on pure copolymer control for L. monocytogenes, S. aureus, and E. coli. When polymeric materials were simultaneously inoculated with combinations of S. aureus and E. coli, the biomass accumulated was higher for EVA + citronellol and lower for EVA + eugenol than that in monoculture biofilm. The findings were similar to the results obtained by 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assay that measures the metabolic activity of viable cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据