4.6 Review

Bioreactor performance in anaerobic digestion of fruit and vegetable wastes

期刊

PROCESS BIOCHEMISTRY
卷 40, 期 3-4, 页码 989-995

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.procbio.2004.03.007

关键词

fruit and vegetable wastes; anaerobic digestion; limitation step; bioreactors performance

向作者/读者索取更多资源

This work reviews the potential of anaerobic digestion for material recovery and energy production from fruit and vegetable wastes (FVW). These wastes contain 8-18% total solids (TS), with a total volatile solids (VS) content of 86-92%. The organic fraction includes about 75% easy biodegradable matter (sugars and hemicellulose), 9% cellulose and 5% lignin. Anaerobic digestion of FVW was studied under different operating conditions using different types of bioreactors. It permits the conversion of 70-95% of organic matter to methane, with a volumetric organic loading rate (OLR) of 1-6.8 g versatile solids (VS)/l day. A major limitation of anaerobic digestion of FVW is a rapid acidification of these wastes decreasing the pH in the reactor, and a larger volatile fatty acids production (VFA), which stress and inhibit the activity of methanogenic bacteria. Continuous two-phase systems appear as more highly efficient technologies for anaerobic digestion of FVW. Their greatest advantage lies in the buffering of the organic loading rate taking place in the first stage, allowing a more constant feeding rate of the methanogenic second stage. Using a two-stage system involving a thermophilic liquefaction reactor and a mesophilic anaerobic filter, over 95% volatile solids were converted to methane at a volumetric loading rate of 5.65 g VS/l d. The average methane production yield was about 4201/kg added VS. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据