4.8 Article

Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method

向作者/读者索取更多资源

A sonochemical method has been successfully used in order to incorporate MnO2 nanoparticles inside the pore channels of CMK-3 ordered mesoporous carbon. Modification of the intrachannel surfaces of CMK-3 to make them hydrophilic enables KMnO4 to readily penetrate the pore channels. At the same time, the modification changes the surface reactivity, enabling the formation of MnO2 nanoparticles inside the pores of CMK-3 by the sonochemical reduction of metal ions. The resultant structures were characterized by X-ray diffraction (XRD), nitrogen adsorption, and transmission electron microscopy (TEM). CMK-3 with 20 wt.-% loading of MnO2 inside CMK-3 delivered an improved discharge performance of 223 mA h g(-1) at a relatively high rate of 1 A g(-1). Almost no decrease in specific capacity is observed for the second cycle, and a discharge capacity of more than 165 mA h g(-1) is retained after 100 cycles. This is attributed to the nanometer-sized MnO2 formed inside CMK-3 and the high surface area of the mesopores (3.1 nm) in which the MnO2 nanoparticles are formed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据