4.6 Article

Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 7, 期 3, 页码 256-260

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2005.01.006

关键词

cytochrome c; multi-walled carbon nanotubes; direct electrochemistry; biosensor

向作者/读者索取更多资源

Direct electrochemistry of cytochrome c (Cyt c), which was adsorbed on the surface of multi-walled carbon nanotubes (MWNTs), was investigated. The results from electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) suggested that Cyt c could be tightly adsorbed on the surface of MWNTs and MWNTs show an obvious promotion for the direct electro-transfer between Cyt c and electrode. A couple of well-defined and quasi-reversible CV peaks of Cyt c can be observed in a phosphate buffer solution (pH 7.0). Cyt c adsorbed on MWNTs exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide (11201). The calculated apparent Michaelis-Menten constant (K-m(app)) was 857 muM, indicating a high catalytic activity of Cyt c adsorbed on MWNTs modified electrode to the reduction of H2O2. Based on these, a third generation reagentless biosensor can be constructed for the determination of H2O2. (C) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据