4.7 Article

Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 98, 期 2, 页码 843-853

出版社

SPRINGER
DOI: 10.1007/s00253-013-5411-y

关键词

Antimicrobial peptides; Wine microbial interactions; Alcoholic fermentation; Biopreservation; Metacaspases; Glyceraldehyde-3-phosphate dehydrogenase

资金

  1. FEDER funds through POFC-COMPETE
  2. national funds through Fundacao para a Ciencia e a Tecnologia (FCT) [FCOMP-01-0124-FEDER-014055]
  3. FCT [PEst-C/EQB/LA0006/2011]
  4. FCT, Portugal [SFRH/BD/89673/2012]
  5. Fundação para a Ciência e a Tecnologia [SFRH/BD/89673/2012, PEst-C/EQB/LA0006/2013] Funding Source: FCT

向作者/读者索取更多资源

Saccharomyces cerevisiae plays a primordial role in alcoholic fermentation and has a vast worldwide application in the production of fuel-ethanol, food and beverages. The dominance of S. cerevisiae over other microbial species during alcoholic fermentations has been traditionally ascribed to its higher ethanol tolerance. However, recent studies suggested that other phenomena, such as microbial interactions mediated by killer-like toxins, might play an important role. Here we show that S. cerevisiae secretes antimicrobial peptides (AMPs) during alcoholic fermentation that are active against a wide variety of wine-related yeasts (e.g. Dekkera bruxellensis) and bacteria (e.g. Oenococcus oeni). Mass spectrometry analyses revealed that these AMPs correspond to fragments of the S. cerevisiae glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein. The involvement of GAPDH-derived peptides in wine microbial interactions was further sustained by results obtained in mixed cultures performed with S. cerevisiae single mutants deleted in each of the GAPDH codifying genes (TDH1-3) and also with a S. cerevisiae mutant deleted in the YCA1 gene, which codifies the apoptosis-involved enzyme metacaspase. These findings are discussed in the context of wine microbial interactions, biopreservation potential and the role of GAPDH in the defence system of S. cerevisiae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据