4.7 Article

Engineering pH-tolerant mutants of a cyanide dihydratase

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 94, 期 1, 页码 131-140

出版社

SPRINGER
DOI: 10.1007/s00253-011-3620-9

关键词

Nitrilase; Cyanide; Bioremediation; Cyanide dihydratase; pH tolerance; Protein stability

资金

  1. Texas Hazardous Substance Research Center
  2. Robert A. Welch Foundation [A-1310]
  3. University of Cape Town
  4. South African National Research Foundation

向作者/读者索取更多资源

Cyanide dihydratase is an enzyme in the nitrilase family capable of transforming cyanide to formate and ammonia. This reaction has been exploited for the bioremediation of cyanide in wastewater streams, but extending the pH operating range of the enzyme would improve its utility. In this work, we describe mutants of Bacillus pumilus C1 cyanide dihydratase (CynD(pum)) with improved activity at higher pH. Error-prone PCR was used to construct a library of CynD(pum) mutants, and a high-throughput screening system was developed to screen the library for improved activity at pH 10. Two mutant alleles were identified that allowed cells to degrade cyanide in solutions at pH 10, whereas the wild-type was inactive above pH 9. The mutant alleles each encoded three different amino acid substitutions, but for one of those, a single change, E327G, accounted for the phenotype. The purified proteins containing multiple mutations were five times more active than the wild-type enzyme at pH 9, but all purified enzymes lost activity at pH 10. The mutation Q86R resulted in the formation of significantly longer fibers at low pH, and both E327G and Q86R contributed to the persistence of active oligomeric assemblies at pH 9. In addition, the mutant enzymes proved to be more thermostable than the wild type, suggesting improved physical stability rather than any change in chemistry accounts for their increased pH tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据