4.6 Article

Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 109, 期 9, 页码 2012-2018

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp045141s

关键词

-

向作者/读者索取更多资源

A benchmark database of forward and reverse barrier heights for 19 non-hydrooen-transfer reactions has been developed by using Weizmarm 1 calculations, and 29 DFT methods and 6 ab initio wave-function theory (WFT) methods have been tested against the new database as well as against an older database for hydrogen atom transfer reactions. Among the tested hybrid DFT methods without kinetic energy density, MPW1K is the most accurate model for calculations of barrier heights. Among the tested hybrid meta DFT methods, BB1K and MPWB1K are the two most accurate models for the calculations of barrier heights. Overall, the results show that BB1K and MPWB1K are the two best DFT methods for calculating barrier heights. followed in order by MPW1K, MPWKCIS1K, B1B95, MPW1B95, BHandHLYP, B97-2, mPW1PW91, and B98. The popular B3LYP method has a mean unsigned error four times larger than that of BB1K. Of the methods tested, QCISD(T) is the best ab initio WFT method for barrier height calculations, and QCISD is second best, but QCISD is outperformed by the BB1K, MPWB1K, MPWKCIS1K, and MPW1K methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据