4.8 Article

Molecular mechanisms for the functionality of lubricant additives

期刊

SCIENCE
卷 307, 期 5715, 页码 1612-1615

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1107895

关键词

-

向作者/读者索取更多资源

Wear limits the life-span of many mechanical devices with moving parts. To reduce wear, lubricants are frequently enriched with additives, such as zinc phosphates, that form protective films on rubbing surfaces. Using first-principles molecular dynamics simulations of films derived from commercial, additives, we unraveled the molecular origin of how antiwear films can form, function, and dissipate energy. These effects originate from pressure-induced changes in the coordination number of atoms acting as cross-linking agents to form chemically connected networks. The proposed mechanism explains a diverse body of experiments and promises to prove useful in the rational design of antiwear additives that operate on a wider range of surface materials, with reduced environmental side effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据