4.6 Article

Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 10, 页码 8945-8950

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M414354200

关键词

-

向作者/读者索取更多资源

Chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is inhibited by a broad range of organic anions that enter the channel pore from its cytoplasmic end, physically occluding the Cl- permeation pathway. These open channel blocker molecules are presumed to bind within a relatively wide pore inner vestibule that shows little discrimination between different large anions. The present study uses patch clamp recording to identify a pore-lining lysine residue, Lys-95, that acts to attract large blocker molecules into this inner vestibule. Mutations that remove the fixed positive charge associated with this amino acid residue dramatically weaken the blocking effects of five structurally unrelated open channel blockers (glibenclamide, 4,4'-dinitrostilbene-2,2'-disulfonic acid, lonidamine, 5-nitro-2-(3-phenylpropylamino) benzoic acid, and taurolithocholate-3-sulfate) when applied to the cytoplasmic face of the membrane. Mutagenesis of Lys-95 also induced amino acid side chain charge-dependent rectification of the macroscopic current-voltage relationship, consistent with the fixed positive charge on this residue normally acting to attract Cl- ions from the intracellular solution into the pore. These results identify Lys-95 as playing an important role in attracting permeant anions into the channel pore inner vestibule, probably by an electrostatic mechanism. This same electrostatic attraction mechanism also acts to attract larger anionic molecules into the relatively wide inner vestibule, where these substances bind to block Cl- permeation. Thus, structurally diverse open channel blockers of CFTR appear to share a common molecular mechanism of action that involves interaction with a positively charged amino acid side chain located in the inner vestibule of the pore.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据