4.7 Article

Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 87, 期 6, 页码 2067-2076

出版社

SPRINGER
DOI: 10.1007/s00253-010-2669-1

关键词

Biodegradation; Azo dyes; Azoreductase

向作者/读者索取更多资源

The flavin-free azoreductase from Xenophilus azovorans KF46F (AzoB), which has been the very first characterized oxygen-tolerant azoreductase, was analyzed in comparison to various recently described flavin-containing azoreductases from different bacterial sources. Sequence comparisons demonstrated that the azoreductase from X. azovorans KF46F is a member of the NmrA family of proteins and demonstrates 30% sequence identity with a NADPH-dependent quinone oxidoreductase from Escherichia coli (encoded by ytfG). In contrast, it was found that the flavin-containing azoreductases from E. coli OY1-2 (AZR), Bacillus sp. OY1-2 (AZR) and related azoreductases all belong to the FMN_red superfamily of enzymes. The substrate specificity of AzoB was reanalyzed in respect to the recently characterized flavin-containing azoreductases, and it was found that purified AzoB converted in addition to different ortho-hydroxy azo compounds [such as Orange II = 1-(4'-sulfophenylazo)-2-naphthol] also the simple non-hydroxylated non-sulfonated azo dye Methyl Red (4'-dimethylaminoazobenzene-2-carboxylic acid), but no indications for the conversion of quinones were obtained. Significant differences were observed in the substrate specificities between AzoB and the flavin-containing azoreductases. The kinetic analysis of the turn-over of Orange II by AzoB suggested an ordered bireactant reaction mechanism which was different from the ping-pong mechanism suggested for the flavin-containing azoreductases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据