4.7 Review

Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 84, 期 1, 页码 37-53

出版社

SPRINGER
DOI: 10.1007/s00253-009-2101-x

关键词

Ethanol production; Xylose fermentation; Saccharomyces cerevisiae; Lignocellulosic biomass; Metabolic engineering

资金

  1. New Energy and Industrial Technology Development Organization (NEDO), Japan.

向作者/读者索取更多资源

Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and major role in industrial bioethanol production, has several advantages due to its high ethanol productivity, as well as its high ethanol and inhibitor tolerance. However, this yeast cannot ferment xylose, which is the dominant pentose sugar in hydrolysates of lignocellulosic biomass. A number of different strategies have been applied to engineer yeasts capable of efficiently producing ethanol from xylose, including the introduction of initial xylose metabolism and xylose transport, changing the intracellular redox balance, and overexpression of xylulokinase and pentose phosphate pathways. In this review, recent progress with regard to these studies is discussed, focusing particularly on xylose-fermenting strains of S. cerevisiae. Recent studies using several promising approaches such as host strain selection and adaptation to obtain further improved xylose-utilizing S. cerevisiae are also addressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据