4.7 Article

Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 84, 期 3, 页码 527-534

出版社

SPRINGER
DOI: 10.1007/s00253-009-1980-1

关键词

Klebsiella pneumoniae; 1,3-Propanediol; Glycerol metabolism; By-product

资金

  1. Ministry of Education, Science and Technology, Korea

向作者/读者索取更多资源

The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae involves the formation of various by-products, which are synthesized through the oxidative pathway. To eliminate the by-products synthesis, the oxidative branch of glycerol metabolism was inactivated by constructing two mutant strains. In one of the mutant strains, the structural genes encoding glycerol dehydrogenase and dihydroxyacetone kinase were deleted from the chromosomal DNA, whereas in the second mutant strain dhaR, which is a putative transcription factor that activates, gene expression was deleted from the chromosomal DNA. In the resultant mutant strains lacking the dhaT gene encoding 1,3-PD oxidoreductase, which was simultaneously deleted while replacing the native promoter with the lacZ promoter, the by-product formation except for acetate was eliminated, but it still produced 1,3-PD at a lower level, which might be due to a putative oxidoreductase that catalyzes the production of 1,3-PD. The recombinant strains in which the reductive pathway was recovered produced slightly lower amount of 1,3-PD as compared to the parent strain, which might be due to the reduced activity of DhaB caused by the substitution of the promoter. However, the production yield was higher in the recombinant strain (0.57 mol mol(-1)) than the wild type Cu strain (0.47 mol mol(-1)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据