4.7 Article

Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle

期刊

JOURNAL OF CELL BIOLOGY
卷 168, 期 6, 页码 887-897

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200408128

关键词

-

资金

  1. NINDS NIH HHS [R01-NS33578, R01 NS033578] Funding Source: Medline

向作者/读者索取更多资源

Class II histone deacetylases (HDACs) may decrease slow muscle fiber gene expression by repressing myogenic transcription factor myocyte enhancer factor 2 (MEF2). Here, we show that repetitive slow fiber type electrical stimulation, but not fast fiber type stimulation, caused HDAC4-GFP, but not HDAC5-GFP, to translocate from the nucleus to the cytoplasm in cultured adult skeletal muscle fibers. HDAC4-GFP translocation was blocked by calmodulin-dependent protein kinase (CaMK) inhibitor KN-62. Slow fiber type stimulation increased MEF2 transcriptional activity, nuclear Ca2+ concentration, and nuclear levels of activated CaMKII, but not total nuclear CaMKII or CaM-YFP. Thus, calcium transients for slow, but not fast, fiber stimulation patterns appear to provide sufficient Ca2+-dependent activation of nuclear CaMKII to result in net nuclear efflux of HDAC4. Nucleocytoplasmic shuttling of HDAC4-GFP in unstimulated resting fibers was not altered by KN-62, but was blocked by staurosporine, indicating that different kinases underlie nuclear efflux of HDAC4 in resting and stimulated muscle fibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据