4.6 Article

A reappraisal of the genomic organization of human Nox1 and its splice variants

期刊

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
卷 435, 期 2, 页码 323-330

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2004.12.021

关键词

Nox1; splice variant; oxidant; PCR; genomic

资金

  1. NHLBI NIH HHS [HL-004404] Funding Source: Medline

向作者/读者索取更多资源

The recent discovery of non-phagocytic NAD(P)H oxidases belonging to the Nox family of enzymes sharing extensive homology to the leukocyte NAD(P)H oxidase has revolutionized our Understanding of oxidative signaling related to fundamental biological processes and disease states. One form of this enzyme, Nox1, is a growth factor-responsive enzyme that catalyzes formation of the reactive oxygen species superoxide (O-2(.-)) and hydrogen peroxide (H2O2). Its expression is linked to a number of biological responses including cellular proliferation, angiogenesis, and activation of cellular signaling pathways. Whereas early published studies have described three distinct isoforms of Nox I, the current body of literature fails to adequately recognize this notion. Also, functional differences between isoforms remain relatively unexplored. Herein, we report that expression of human Nox1 is restricted to two distinct isoforms derived from a single gene; that is, the full-length gene product and a shorter spliced variant which lacks one of the NAD(P)H binding domains. We have developed PCR primer sets that distinguish between the two forms of Nox1 in several human cell lines. We could not find evidence for expression of the shortest reported form of Nox1 (NOH-1S), Previously identified as a proton channel, and the absence of paired splice sites in the gene suggests that it represents a reverse transcriptase artifact. A survey of the scientific literature reveals that the majority of studies related to Nox1 do not utilize molecular strategies that would adequately discern between the two Nox1 variants. The current literature suggest the two identified isoforms of human Nox1 (which we have named Nox1-L and Nox1-S) may be functionally distinct. Future Studies related to Nox1 will benefit from establishing the identity of the Nox1 isoform expressed and the functions attributed to each variant. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据