4.7 Article

Prior exercise training improves the outcome of acute myocardial infarction in the rat - Heart structure, function, and gene expression

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jacc.2004.11.052

关键词

-

向作者/读者索取更多资源

OBJECTIVES The aim of this research was to investigate the structural, functional, and molecular features of the remodeling heart in prior swim-trained infarcted rats. BACKGROUND Physical exercise training is a known protective factor against cardiovascular morbidity and mortality. The structural and molecular aspects underlying this protection in the remodeling heart have not been investigated. METHODS After seven weeks of swimming exercise training, rats underwent surgical ligation of the left coronary artery followed by a four-week sedentary period. Untrained control rats underwent the same surgical protocol. Left ventricular function was assessed by echocardiography four weeks after infarction, and hearts were sampled for histological and molecular analysis. Ribonucleic acid from the surviving left ventricle was analyzed by complementary deoxyribonucleic acid arrays followed by Northern blotting or quantitative reverse transcription polymerase chain reaction of selected messenger ribonucleic acids (mRNAs). RESULTS Scar area was 1.6-fold smaller (p = 0.0002), arteriolar density was 1.7-fold higher (p = 0.0002), and left ventricular shortening fraction was 1.9-fold higher (p = 0.003) in the exercise-trained compared with sedentary hearts. Eleven genes whose expression level varied by at least +/- 1.5-fold distinguished the prior exercised rats from their sedentary counterparts. Compared with sedentary, the exercised hearts displayed 9- and 2.4-times lower levels of atrial natriuretic peptide and aldolase mRNA (p = 0.03 and 0.04, respectively), and a 2.7- and 1.9-fold higher abundance of cytochrome c-oxidase and fatty acid binding protein, respectively (p < 0.03, each). CONCLUSIONS Swimming exercise training before acute myocardial infarction reduces scar size, increases arteriole density, and manifests adaptation of stress- and energy-metabolism-related genes that may contribute to the improved heart function observed during remodeling. U Am (c) 2005 by the American College of Cardiology Foundation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据