4.5 Article

Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels

期刊

JOURNAL OF CELL SCIENCE
卷 118, 期 6, 页码 1161-1171

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.01695

关键词

S1P; myoblast; cytoskeleton; stretch-activated channel; SAC; Rho pathway; PLD pathway

向作者/读者索取更多资源

Sphingosine 1-phosphate (S1P) is a bioactive lipid that is abundantly present in the serum and mediates multiple biological responses. With the aim of extending our knowledge on the role played by S1P in the regulation of cytoskeletal reorganization, native as well as C2Cl2 myoblasts stably transfected with green fluorescent protein (GFP)-tagged alpha- and beta-actin constructs were stimulated with S1P (1 mu M) and observed under confocal and multiphoton microscopes. The addition of S1P induced the appearance of actin stress fibres and focal adhesions through Rho- and phospholipase D (PLD)-mediated pathways. The cytoskeletal response was dependent on the extracellular action of S1P through its specific surface receptors, since the intracellular delivery of the sphingolipid by microinjection was unable to modify the actin cytoskeletal assembly. Interestingly, it was revealed by whole-cell patch-clamp that S1P-induced stress fibre formation was associated with increased ion currents and conductance through stretch-activated channels (SACs), thereby suggesting a possible regulatory role for organized actin in channel sensitivity. Experiments aimed at stretching the plasma membrane of C2Cl2 cells, using the cantilever of an atomic force microscope, indicated that there was a Ca2+ influx through putative SACs. In conclusion, the present data suggest novel mechanisms of S1P signalling involving actin cytoskeletal reorganization and Ca2+ elevation through SACs that might influence myoblastic functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据