4.7 Article

Pasteurella multocida sialic acid aldolase:: a promising biocatalyst

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 79, 期 6, 页码 963-970

出版社

SPRINGER
DOI: 10.1007/s00253-008-1506-2

关键词

aldolase; capillary electrophoresis; Escherichia coli; lyase; NanA; Pasteurella multocida

资金

  1. NIGMS NIH HHS [R01 GM076360, R01 GM076360-03, R01GM076360] Funding Source: Medline

向作者/读者索取更多资源

Sialic acid aldolases or N-acetylneuraminate lyases (NanAs) catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-D-mannosamine (ManNAc). A capillary electrophoresis assay was developed to directly characterize the activities of NanAs in both Neu5Ac cleavage and Neu5Ac synthesis directions. The assay was used to obtain the pH profile and the kinetic data of a NanA cloned from Pasteurella multocida P-1059 (PmNanA) and a previously reported recombinant Escherichia coli K12 NanA (EcNanA). Both enzymes are active in a broad pH range of 6.0-9.0 in both reaction directions and have similar kinetic parameters. Substrates specificity studies showed that 5-O-methyl-ManNAc, a ManNAc derivative, can be used efficiently as a substrate by PmNanA, but not efficiently by EcNanA, for the synthesis of 8-O-methyl Neu5Ac. In addition, PmNanA (250 mg l(-1)culture) has a higher expression level (2.5-fold) than EcNanA (94 mg l(-1) culture). The higher expression level and a broader substrate tolerance make PmNanA a better catalyst than EcNanA for the chemoenzymatic synthesis of sialic acids and their derivatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据