4.7 Article

Postsynaptic expression of homeostatic plasticity at neocortical synapses

期刊

JOURNAL OF NEUROSCIENCE
卷 25, 期 11, 页码 2895-2905

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5217-04.2005

关键词

homeostasis; short-term plasticity; synaptic plasticity; FM1-43; time-lapse imaging; AMPA receptors; sodium currents

资金

  1. NINDS NIH HHS [R56 NS036853, R01 NS036853, NS 36853] Funding Source: Medline

向作者/读者索取更多资源

Synaptic scaling is a form of homeostatic plasticity that scales synaptic strengths up or down to compensate for prolonged changes in activity. It has been controversial whether this plasticity is expressed presynaptically, postsynaptically, or both. Here we describe in detail the homeostatic changes that take place at excitatory synapses in visual cortical cultures after 1 or 2 d of activity blockade. After 7 - 10 d in vitro, activity blockade significantly increased postsynaptic accumulation of synaptic AMPA receptors via proportional increases in glutamate receptor 1 (GluR1) and GluR2. Time-lapse imaging of enhanced green fluorescent protein-tagged AMPA receptors revealed that receptor accumulation increased progressively over 2 d of activity blockade and affected the entire population of imaged synapses. The strength of synaptic connections between pyramidal neurons was more than doubled after activity blockade without affecting short-term depression or the coefficient of variation of the postsynaptic responses. Furthermore, uptake of the fluorescent styryl dye FM1-43 (N-(3-triethylammoniumpropyl)-4-[4-(dibutylamino) styryl] pyridinium dibromide) by presynaptic terminals was not different at control and activity-blocked synapses. In addition to the increased accumulation of postsynaptic AMPA receptors, boosting of dendritic AMPA currents by sodium channels was increased by activity blockade. These data indicate that, at young neocortical synapses, synaptic scaling has a predominantly postsynaptic locus and functions as a gain control mechanism to regulate neuronal activity without affecting the dynamics of synaptic transmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据