4.8 Article

A molecular flytrap for the selective binding of citrate and other tricarboxylates in water

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 127, 期 10, 页码 3373-3379

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0433469

关键词

-

向作者/读者索取更多资源

The synthesis and binding properties of a new tricationic guanidiniocarbonyl pyrrole receptor 7 are described. Receptor 7 binds citrate 9 and other tricarboxylates such as trimesic acid tricarboxylate 8 with unprecedented high association constants of K-assoc > 10(5) M-1 in water as determined by UV and fluorescence tritration studies. According to NOESY experiments and molecular modeling calculations, the tricarboxylates are bound within the inner cavity of receptor 7 by ion pairing between the carboxylate groups and the guanidiniocarbonyl pyrrole moieties, favored by the nonpolar microenvironment of the cavity. Hence, receptor 7 can be regarded as a molecular flytrap. In the case of the aromatic tricarboxylate 8, additional aromatic interactions further strengthen the complex. The complexes with the tricarboxylates are so strong that even the presence of a large excess of competing anions or buffer salts does not significantly affect the association constant. For example, the association constant for citrate changes only from K-assoc = 1.6 x 10(5) M-1 in pure water to K-assoc = 8.6 x 10(4) M-1 in the presence of a 170-fold excess of bis-tris buffer and a 1000-fold excess of chloride. This makes 7 one of the most efficient receptors for the binding of citrate in aqueous solvents reported thus far.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据