4.6 Article

Resurrecting the ancestral enzymatic role of a modulatory subunit

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 11, 页码 10189-10195

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M413540200

关键词

-

向作者/读者索取更多资源

In the post-genomic era, functional prediction of genes is largely based on sequence similarity searches, but sometimes the homologues bear different roles because of evolutionary adaptations. For instance, the existence of enzyme and non-enzyme homologues poses a difficult case for function prediction and the extent of this phenomenon is just starting to be surveyed. Different evolutionary paths are theoretically possible for the loss or acquisition of enzyme function. Here we studied the ancestral role of a model non-catalytic modulatory subunit. With a rational approach, we resurrected enzymatic activity from that subunit to experimentally prove that it derived from a catalytic ancestor. We show that this protein (L subunit ADP-glucose pyrophosphorylase) evolved to have a regulatory role, losing catalytic residues more than 130 million years ago, but preserving, possibly as a by-product, the substrate site architecture. Inactivation of catalytic subunits could be the consequence of a general evolutionary strategy to explore new regulatory roles in hetero-oligomers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据